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Motivation 

Provide new market/security software capabilities via: 

BETTER SECURITY & ECONOMIC PERFORMANCE:  
Identify a more secure operating condition at lower production costs 

Risk-based security-
constrained economic 
dispatch (RB-SCED) 

• more secure operating 
conditions 
• lower costs 

Achieve economic objective while 
managing system security +circuit 
security instead of only the latter.  

Function Concept Outcome 
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Motivation 
This work is about how to operate power systems 
under steady-state contingency constraints.  
 
It suggests two changes to the way we balance 
security and economy in operating power systems 
[1,2,3] (which is done by the SCED today). 
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1. Probabilistically weight  
the contingencies. 

[1] T. Dy Liacco, “Real-time Computer Control of Power Systems,” Proc. of the IEEE, Vol. 62, No. 7, July 1974, 
[2] J. Carpentier,  "Differential Injections Method: A General Method for Secure and Optimal Load Flows", IEEE PICA 
Conference Proceedings Minneapolis, MN, pp. 255-262,  June 1973  
[3] O. Alsac and B. Stott, “Optimal load flow with steady state security,” IEEE Trans. on Power Apparatus and Systems, 
Vol. PAS-93, pp. 745-751, May/June 1974  

2. Change the nature and 
number of the constraints 
This talk focuses mainly on  
#2 because it is essential. 



Motivation 

Operating condition 2: 
2 different contingencies each having  
2 post-contingency flows between  
95% and 100% of their LTE 
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Operating condition 1: 
1 contingency having  
1 post-contingency flow at  
101% of its long-time emergency (LTE) limits; 
all other contingencies result in post-contingency 
flows<90% of their LTE 

“INSECURE” 

“SECURE” 

Yet operating condition #2 is more risky than operating condition #1. 
Today’s approach does not capture this because it does not quantify 
security level in terms of: 
• “heavy” post-contingency flows <100% of LTE 
• number of contingencies resulting in “heavy” post-contingency flows 
• number of “heavy” post-contingency flows for each contingency 



SCED and RB-SCED 
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Whereas SCED imposes re-dispatch control 
• only for post-contingency flows exceeding its LTE 
• as much as needed, to satisfy the (circuit) LTE 
RB-SCED imposes re-dispatch control 
• for all “heavy” flows 
• weighted by flow magnitude, to satisfy a (system) 

risk constraint 
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Under RB-SCED, the system is dispatched under 
normal conditions to:  
 
1) Satisfy pre-contingency (normal) flow constraints 

 
2) Lower post-contingency flows for circuits having 

post-contingency loadings above 90% of  LTE flow 
limits 
 

3) Satisfy post-contingency flow constraints  
• at LTE flow limits 
• at 105% of LTE flow limits 
• at 120% of LTE flow limits (STE) 

Same as SCED 

Makes it more 
secure than SCED 

Makes it more 
economic than SCED 

(2) and (3) together results in more secure 
& more economic operating conditions. 

SCED and RB-SCED 



SCED and RB-SCED 
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Operating condition 3: 
Contingency A results in post-contingency flows of 103% and 98% 
Contingency B results in post-contingency flows of 95% and 93%. 

What SCED does What RB-SCED does 
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Cont A, 
Line 1 

Cont A, 
Line 1 

Cont A, 
Line 2 

Cont B, 
Line 3 

Cont B, 
Line 4 



     
Risk constraint 

     
    normal constraints 

    PF Eqs 

Formulation - Optimization 9 
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Constraints 

• PF Eqs and normal constraints are identical 
• KC<1 tightens contingency constraints; KC>1 loosens them 
• Risk constraint is across all contingencies  
• KR<1 tightens risk constraint, KR>1 loosens risk constraint 
• RB-SCED becomes SCED with KR=∞, KC=1 
• KR, KC enable tradeoff between system & circuit security 

SCED RB-SCED 



Formulation - Risk Expression 10 

Contingency probabilities:  
• computed using historical data & real-time information [1] 
• or assigned identical values: Prk=1/(NC+1) for all k. 
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[1] F. Xiao, J. McCalley, Y. Ou, J. Adams, S. Myers, “Contingency Probability Estimation Using 
Weather and Geographical Data for On-Line Security Assessment,” Proceedings of the 9th 
International Conference on Probabilistic Methods Applied to Power Systems, June 11-15, 2006. 

A weighted sum of normalized post-contingency  
flows on heavy-loaded circuits. 



Formulation –  
Severity Evaluation 
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Adaptive Emergency Transm Rates [1] 
• Lng-time emrgncy (LTE) rating, 4hrs 
• Shrt-time emrgncy (STE) rating, 15mins 
• Drastic action limit (DAL), immediate 
[1] S. Maslennikov, E. Litvinov. “Adaptive Emergency Transmission Rates 
in Power System and Market Operation,” IEEE Trans. Pwr Sys, May 2009. 



RB-SCED Solution Procedure [1] 
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• DC power flow representation is used. 
• Risk cannot be evaluated until flows are known. 
• Two-level nested Benders decomposition: 

• Master risk problem is a SCED solved by Benders 
• SCED solution checked for feasibility & optimality in risk subproblem 

Master problem (ED)

Feasibility Check for first 
contingency

Contingency Feasibility Check




Feasibility Check for last 
contingency

Feasibility Check for normal 
condition

feasibility 
cut

Master Risk Problem 
(SCED)

Feasibility Check of 
Risk Sub-problem

Optimality Check 
of Risk 

Sub-problemoptimality
cut

Risk Sub-problem

feasibility 
cut

feasibility 
cut

feasibility 
cut

[1] Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, “A Computational Strategy to Solve Preventive Risk-based Security-Constrained Optimal 
Power Flow,” Digital Object Identifier: 10.1109/TPWRS.2012.2219080, IEEE Transactions on Power Systems, 2012. 
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Post-contingency flows 
represented by 

White Circles: SCED 
Blue Squares: RB-SCED 

with distance to center = %flow: 
White: Safe flow, < 90% 
Yellow: Heavy flow, 90-100% 
Red: Exceeds LTE 

      
    Sectors: contingencies 

IEEE 30  
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Results: 30-bus system 

SCED RB-SCED 
Cost $451,383 $446,420 
Risk 1.51 0.84 



Results: 30-bus system 
 Is it more secure? 
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Level 1 is a second trip after initial 
outage, for circuits w/ flows 
exceeding 90%.  

Levels 2, 3, … occur if flow>125% 



Results: 30-bus system 
 Is it more secure? 
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Contingency # 

Post-contingency flows are more uniformly loaded, reactive losses 
are lower, so Qmargin is greater.  
AC power flow analysis indicates SCED model has more reactive 
losses than RB-SCED model. 

120% model, KC=1.2, KR=1.0 

105% model, KC=1.05, KR=1.0 

100% model, KC=1.0, KR=1.0 

[Qmargin of RB-SCED] 
-[Qmargin of SCED]  
(MVARS) 
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16 Results: 85-bus system 

R. Dai, H. Pham, Y. Wang, and J. McCalley, “Long term benefits of online risk-based optimal power flow,” Journal of Risk and Reliability (Part O of the Proceedings of 
the Institution of Mechanical Engineers): Special Issue on "Risk and reliability modeling of energy systems,” Vol. 226, Issue 1, Feb, 2012.  
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Post-contingency angle separations 

17 Results: 85-bus system 
 Is it more secure? 

R. Dai, H. Pham, Y. Wang, and J. McCalley, “Long term benefits of online risk-based optimal power flow,” Journal of Risk and Reliability (Part O of the Proceedings of 
the Institution of Mechanical Engineers): Special Issue on "Risk and reliability modeling of energy systems,” Vol. 226, Issue 1, Feb, 2012.  



Results: ISONE System 

Corrective RB-SCED 
{ }0

0

0min max

0min max

0

0 0 max1

min ( )

. . ( ) 0

( )

( ) , 1,...,

0 ( ( ),... ( ))

C Ck

k

RNC

f P

s t h P

g g P g

K g g P K g k NC

P P P

Risk g P g P K Risk

=

≤ ≤

′ ′≤ ≤ =

− ≤ ∆

≤ ≤

18 

ISO New England system 
• 2351 buses, 3189 circuits, 250 contingencies 
• 802,150 decision variables, 4,001,196 constraints 
• Riskmax = Risk from SCED so reference risk is no higher 

than what has been acceptable in the past, then, KR=0.5 
• Solved in CPLEX on a PC laptop with inter Core 2 Duo 

2.50 GHz and 3GB memory; solution time is ~20 min. 

SCED 
RB-SCED 

100% Model 
(KC=1, KR = 0.5) 

105% Model 
(KC =1.05, KR = 0.5) 

120% Model 
(KC =1.20, KR = 0.5) 

Cost ($/hr) 684,642 728,899 610,611 605,542 
Risk 18.27 9.13 9.13 9.13 



Results: ISONE System 

Comparing SCED & RB-SCED on ISO-NE system for 10 sequential hrs 
(Different cases from previous slide). 

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

So
ci

al
 su

rp
lu

s (
 1

05 
$)

 

Hours 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

1 2 3 4 5 6 7 8 9 10

R
is

k 

Hours 

SCED
RBED

• Area=ISO-NE savings over 10 hrs=$2M (assume 0 during other 14 hrs) 
• Annual cost saving: $2.0M×5×52=$520M/yr (assume 0 for weekend) 
     And it is more secure! 
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Results: ISONE System 
Is it more secure? 
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Number of circuits 
with flows exceeding 
90% of continuous 

limit in the  
normal state 

Number of circuits 
with flows exceeding 

90% of LTE in 
all post-contingency 

states  
SCED 33 8183 

RB-SCED 

100% 
model 28 6819 
105% 
model 22 5388 
120% 
model 23 5678 



Effect on LMPs 
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The risk component of the LMP provides a price signal that 
incentivizes market participants to improve system risk. 



Results: Six bus system 
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Some buses have higher 
RLMPs; some have 
lower, due to  
• Risk constraint 

causes increase 
• Relaxed post-

contingency limits 
causes decrease 

Difference is due to RLMP’s ability to distinguish between 
• line C-E’s carrying heavy post-contingency flow for 2 contingencies, with 
post-contingency loadings of 97.5% and 101.8%, respectively, 
• line B-D’s carrying heavy post-contingency flow for only 1 contingency, with 
post-contingency loadings of 100%. 

100% model 

105% model 

For SCED & 100% 
model, investment 
incentives are on B-D. 
For 105% model, 
investment incentives 
are on C-E. 



Results: 240 bus WECC system 
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100% model 105% model 120% model 

RB-SCED 

R-LMP’s are more uniform over space and, we think, less volatile. 



Corrective RB-SCED [1] 
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[1] *Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, “Solving Corrective Risk-based Security-Constrained OPF with 
Lagrangian Relaxation and Benders Decomposition,” under review by IEEE Transactions on Power Systems. 

• Corrective RB-SCED allows post-contingency 
corrective action to relieve loadings; 

• Formulated, coded, and tested it on 30-bus 
system and on ISO-NE system; 

• Results from ISO-NE system are below. 



• RB-SCED: potential to significantly enhance 
efficiencies of real-time electricity markets; 

• while simultaneously increasing security 
levels and providing operators with a “system 
lever” for more effective control. 

• Offers basis for identifying prices when 
“unmanageable constraints” are relaxed; 

• No changes in market structure are required. 
• Next step: commercialize into market SW; 

then gain experience side-by-side with SCED 

Conclusions 
26 
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