New Approaches to Balancing Security & Economy: Risk-based security-constrained economic dispatch (RB-SCED)

James D. McCalley

jdm@iastate.edu

Iowa State University

Acknowledgments:

- Qin Wang (MISO), Xian Guo (ISU)
- Tongxin Zheng and Eugene Litvinov (ISO-New England)
- Consortium for Electric Reliability Technology Solutions, CERTS This research is one of the PSERC projects coordinated by CERTS w/ funding provided by US DOE
 - Joe Eto (Lawrence Berkeley National Laboratory)
 - Phil Overholt (US DOE Office of Electricity Delivery & Energy Reliability)

PSERC Webinar January 21, 2014

Outline

- 1. Motivation
- 2. SCED and RB-SCED
- 3. Formulation
- 4. RB-SCED Solution Procedure
- 5. Illustrative results
 - 30 bus system
 - 85 bus system
 - ISO-NE system
- 6. Effect on LMPs
- 7. Corrective RB-SCED
- 8. Conclusions

Motivation

Provide new market/security software capabilities via:

BETTER SECURITY & ECONOMIC PERFORMANCE: Identify a more secure operating condition at lower production costs

Function

Risk-based securityconstrained economic dispatch (RB-SCED)

Concept

Achieve economic objective while managing *system* security +*circuit* security instead of only the latter.

Outcome

• more secure operating conditions

• lower costs

Motivation

This work is about how to operate power systems under steady-state contingency constraints.

It suggests two changes to the way we balance security and economy in operating power systems [1,2,3] (which is done by the SCED today).

1. Probabilistically weight the contingencies.

2. Change the nature and number of the constraints

This talk focuses mainly on #2 because it is essential.

[1] T. Dy Liacco, "Real-time Computer Control of Power Systems," Proc. of the IEEE, Vol. 62, No. 7, July 1974,
[2] J. Carpentier, "Differential Injections Method: A General Method for Secure and Optimal Load Flows", IEEE PICA Conference Proceedings Minneapolis, MN, pp. 255-262, June 1973
[3] O. Alsac and B. Stott, "Optimal load flow with steady state security," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-93, pp. 745-751, May/June 1974

Motivation

Operating condition 1: 1 contingency having 1 post-contingency flow at 101% of its long-time emergency (LTE) limits; all other contingencies result in post-contingency flows<90% of their LTE

Operating condition 2: 2 different contingencies each having 2 post-contingency flows between 95% and 100% of their LTE

Yet operating condition #2 is more risky than operating condition #1. Today's approach does not capture this because it does not quantify security level in terms of:

- "heavy" post-contingency flows <100% of LTE
- number of contingencies resulting in "heavy" post-contingency flows
- number of "heavy" post-contingency flows for each contingency

"INSECURE"

"SECURE"

SCED and RB-SCED

Whereas SCED imposes re-dispatch control

- only for post-contingency flows exceeding its LTE
- as much as needed, to satisfy the (circuit) LTE RB-SCED imposes re-dispatch control
- for all "heavy" flows
- weighted by flow magnitude, to satisfy a (system) risk constraint

SCED and RB-SCED

Under RB-SCED, the system is dispatched under normal conditions to:

Same as SCED	1)	Satisfy pre-contingency (normal) flow constraints
Makes it more secure than SCED	2)	Lower post-contingency flows for circuits having post-contingency loadings above 90% of LTE flow
	3)	Satisfy post-contingency flow constraintsat LTE flow limits
Makes it more economic than SCED		 at 105% of LTE flow limits at 120% of LTE flow limits (STE)

(2) and (3) together results in more secure& more economic operating conditions.

SCED and RB-SCED

Operating condition 3:

Contingency A results in post-contingency flows of 103% and 98% Contingency B results in post-contingency flows of 95% and 93%.

Formulation - Optimization

9

SCED	RB-SCED
$\operatorname{Min}\left\{f(\underline{P_0})\right\}$	$\operatorname{Min}\left\{f(\underline{P_0})\right\}$
<i>S.t</i> .	<i>s.t</i> .
$\underline{h}(\underline{P}_0) = \underline{0}$	$\underline{h}(\underline{P}_0) = \underline{0} \qquad \mathbf{PF Eqs}$
$\underline{g}_{\min} \leq \underline{g}(\underline{P}_{0}) \leq \underline{g}_{\max}$	$\underline{g}_{\min} \leq \underline{g}(\underline{P}_0) \leq \underline{g}_{\max} \qquad \text{normal constraints}$
$\underline{g'}_{\min} \leq \underline{g}_{k}(\underline{P}_{0}) \leq \underline{g'}_{\max}, k = 1,, NC$	$K_{C} \underline{g'}_{\min} \leq \underline{g}_{k} (\underline{P}_{0}) \leq K_{C} \underline{g'}_{\max}, k = 1,, NC$
	$0 \le Risk(\underline{g}_{1}(P_{0}), \dots, \underline{g}_{NC}(P_{0})) \le K_{R}Risk_{\max}$
Contingency Constraints	Risk constraint
Consu anns	

- PF Eqs and normal constraints are identical
- $K_C < 1$ tightens contingency constraints; $K_C > 1$ loosens them
- Risk constraint is across all contingencies
- $K_R < 1$ tightens risk constraint, $K_R > 1$ loosens risk constraint
- RB-SCED becomes SCED with $K_R = \infty$, $K_C = 1$
- K_R, K_C enable tradeoff between system & circuit security

Formulation - Risk Expression

A weighted sum of normalized post-contingency flows on heavy-loaded circuits.

$$Risk(\underline{g}_{1}(\underline{P}_{0}),...,\underline{g}_{NC}(\underline{P}_{0})) = \sum_{k=1}^{N_{C}} \Pr_{k} \sum_{j=1}^{N_{L}} Sev_{j}(\underline{g}_{k}(\underline{P}_{0}))$$

Contingency probabilities:

- computed using historical data & real-time information [1]
- or assigned identical values: $Pr_k = 1/(N_C+1)$ for all k.

[1] F. Xiao, J. McCalley, Y. Ou, J. Adams, S. Myers, "Contingency Probability Estimation Using Weather and Geographical Data for On-Line Security Assessment," Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems, June 11-15, 2006.

RB-SCED Solution Procedure [1]

- DC power flow representation is used.
- Risk cannot be evaluated until flows are known.
- Two-level nested Benders decomposition:
 - Master risk problem is a SCED solved by Benders
 - SCED solution checked for feasibility & optimality in risk subproblem

[1] Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, "A Computational Strategy to Solve Preventive Risk-based Security-Constrained Optimal Power Flow," Digital Object Identifier: 10.1109/TPWRS.2012.2219080, *IEEE Transactions on Power Systems*, 2012.

Results: 30-bus system

IEEE 30

bus system

 \mathcal{O}_{n}

Post-contingency flows represented by White Circles: SCED Blue Squares: RB-SCED with distance to center = % flow: White: Safe flow, < 90% Yellow: Heavy flow, 90-100% Red: Exceeds LTE

Sectors: contingencies

	SCED	RB-SCED
Cost	\$451,383	\$446,420
Risk	1.51	0.84

14

RB-SCED

0.05

0.4

0.02

100

Levels 2, 3, ... occur if flow>125%

Post-contingency flows are more uniformly loaded, reactive losses are lower, so Qmargin is greater. AC power flow analysis indicates SCED model has more reactive losses than RB-SCED model.

Results: 85-bus system

R. Dai, H. Pham, Y. Wang, and J. McCalley, "Long term benefits of online risk-based optimal power flow," *Journal of Risk and Reliability* (Part O of the Proceedings of the Institution of Mechanical Engineers): Special Issue on "Risk and reliability modeling of energy systems," Vol. 226, Issue 1, Feb, 2012.

Results: 85-bus system Is it more secure?

Post-contingency angle separations

R. Dai, H. Pham, Y. Wang, and J. McCalley, "Long term benefits of online risk-based optimal power flow," *Journal of Risk and Reliability* (Part O of the Proceedings of the Institution of Mechanical Engineers): Special Issue on "Risk and reliability modeling of energy systems," Vol. 226, Issue 1, Feb, 2012.

Results: ISONE System

ISO New England system

- 2351 buses, 3189 circuits, 250 contingencies
- 802,150 decision variables, 4,001,196 constraints
- $Risk_{max} = Risk$ from SCED so reference risk is no higher than what has been acceptable in the past, then, $K_R=0.5$
- Solved in CPLEX on a PC laptop with inter Core 2 Duo 2.50 GHz and 3GB memory; solution time is ~20 min.

			RB-SCED	
	SCED	100% Model ($K_C=1, K_R=0.5$)	105% Model ($K_c = 1.05, K_R = 0.5$)	120% Model $(K_{\rm C} = 1.20, K_{\rm R} = 0.5)$
Cost (\$/hr)	684,642	728,899	610,611	605,542
Risk	18.27	9.13	9.13	9.13

Results: ISONE System

Comparing SCED & RB-SCED on ISO-NE system for 10 sequential hrs (Different cases from previous slide).

Annual cost saving: \$2.0M×5×52=\$520M/yr (assume 0 for weekend)

And it is more secure!

Results: ISONE System Is it more secure?

		Number of circuits with flows exceeding	Number of circuits with flows exceeding
		90% of continuous limit in the <i>normal state</i>	90% of LTE in all post-contingency states
SCED		33	8183
1 RB-SCED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100% model	28	6819
	105% model	22	5388
	120% model	23	5678

Effect on LMPs

Traditional LMPs=	Risk-based LMPs
$LMP_i^{Energy} = \lambda_1$	$RLMP_i^{Energy} = \lambda_2$
$+ LMP_i^{Loss} = -\frac{\partial Loss}{\partial P_i} \lambda_1$	$+ RLMP_i^{Loss} = -\frac{\partial Loss}{\partial P_i} \lambda_2$
$+ LMP_{i}^{Congestion} = -(\sum_{l=1}^{NL} \mu_{1l}^{0} GSF_{l-i}^{0} + \sum_{k=1}^{NC} \sum_{l=1}^{NL} \mu_{1l}^{k} GSF_{l-i}^{k})$	+ $RLMP_{i}^{Congestion} = -(\sum_{l=1}^{NL} \mu_{2l}^{0} GSF_{l-i}^{0} + \sum_{k=1}^{NC} \sum_{l=1}^{NL} \mu_{2l}^{k} GSF_{l-i}^{k})$
	+ $RLMP_i^{Risk}\Big _{S_1} = -\sum_{k=1}^{NC} \sum_{l=1}^{NL} r_l^k P r_k GSF_{l-i}^k \tau$

The risk component of the LMP provides a price signal that incentivizes market participants to improve system risk.

Results: Six bus system

Model	Bus Name	(R)LMP	(R)LMP Energy	(R)LMP Congestion	RLMP Risk	
	А	13.53	13.53	0.00	-	
	В	11.33	13.53	-2.20	-	
SCED	С	11.83	13.53	-1.70	-	lo
SCED	D	34.58	13.53	21.04	-	•
	Е	16.95	13.53	3.41	-	
	F	13.73	13.53	0.20	-	
	А	13.53	13.53	0.00	0.00	•
100% model	В	12.11	13.53	-1.80	0.37	
	С	14.99	13.53	0.26	1.19	
$(\mathbf{A}_C = \mathbf{I}; \mathbf{A}_R = -0.9)$	D	33.13	13.53	19.48	0.11]
=0.9)	Е	15.51	13.53	2.70	-0.73] F
	F	14.30	13.53	0.14	0.62	l n
	Α	13.53	13.53	0	0.00	i1
1050 model	В	14.66	13.53	0	1.13	
(K = 1.05)	С	17.13	13.53	0	3.60] F
$(K_c = 1.03, K_n = 0.9)$	D	13.87	13.53	0	0.33] ii
$\mathbf{R}_{R} = 0.9$	Е	11.35	13.53	0	-2.19	2
	F	15.41	13.53	0	1.87	a

ome buses have higher LMPs; some have ower, due to **Risk constraint** causes increase

Relaxed postcontingency limits causes decrease For SCED & 100%

nodel, investment

ncentives are on B-D.

For 105% model,

nvestment incentives re on C-E.

Difference is due to RLMP's ability to distinguish between

• line C-E's carrying heavy post-contingency flow for 2 contingencies, with post-contingency loadings of 97.5% and 101.8%, respectively,

• line B-D's carrying heavy post-contingency flow for only 1 contingency, with post-contingency loadings of 100%.

Results: 240 bus WECC system

R-LMP's are more uniform over space and, we think, less volatile.

Corrective RB-SCED [1]

- Corrective RB-SCED allows post-contingency corrective action to relieve loadings;
- Formulated, coded, and tested it on 30-bus system and on ISO-NE system;
- Results from ISO-NE system are below.

		CRB-SCOPF		
Constraints	CSCOPF	HSM	ESM	HEM
		$(K_C=1, K_R=0.5)$	$(K_C = 1.05, K_R = 0.5)$	$(K_C = 1.20, K_R = 0.5)$
Risk	18.24	9.12	9.12	9.12
Cost (\$)	616172.1	678654.3	608672.2	593676.6

annraaah		no. of circuits with flow over 90% limit		
approach		normal state	contingency states	
CSCOPF		30	7201	
CDD	HSM	21	5876	
CKB-	ESM	19	5019	
SCOPF	EESM	18	4963	

[1] *Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, "Solving Corrective Risk-based Security-Constrained OPF with Lagrangian Relaxation and Benders Decomposition," under review by *IEEE Transactions on Power Systems*.

Conclusions

- RB-SCED: potential to significantly enhance efficiencies of real-time electricity markets;
- while simultaneously increasing security levels and providing operators with a "system lever" for more effective control.
- Offers basis for identifying prices when "unmanageable constraints" are relaxed;
- No changes in market structure are required.
- Next step: commercialize into market SW; then gain experience side-by-side with SCED

References

- 1. *Q. Wang, *G. Zhang, J. McCalley, T. Zheng, and E. Litvinov, "Risk-based locational marginal pricing and congestion management," under review by *IEEE Transactions on Power Systems*.
- 2. *Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, "Solving Corrective Risk-based Security-Constrained OPF with Lagrangian Relaxation and Benders Decomposition," under review by *IEEE Transactions on Power Systems*.
- 3. *Q. Wang and J. McCalley, "Voltage instability performance of risk-based security constrained optimal power flow," under review by *Electric Power Systems Research*.
- 4. *Q. Wang, J. McCalley, and Wanning Li, "Risk and 'N-1' Criteria Coordination for Real-time Operations," to appear in *IEEE Transactions on Power Systems*, 2013.
- 5. *Q. Wang, J. McCalley, T. Zheng, and E. Litvinov, "A Computational Strategy to Solve Preventive Risk-based Security-Constrained Optimal Power Flow," Digital Object Identifier: 10.1109/TPWRS.2012.2219080, *IEEE Transactions on Power Systems*, 2012.
- *R. Dai, *H. Pham, *Y. Wang, and J. McCalley, "Long term benefits of online risk-based optimal power flow," *Journal of Risk and Reliability* (Part O of the Proceedings of the Institution of Mechanical Engineers): Special Issue on "Risk and reliability modeling of energy systems," Vol. 226, Issue 1, Feb, 2012.
- 7. *F. Xiao and J. McCalley, "Power System Risk Assessment and Control in a Multi-objective Framework," *IEEE Transactions on Power Systems*, Vol. 24, No. 1, Feb. 2009, pp 78-87.
- 8. *F. Xiao and J. McCalley, "Risk Based Security and Economy Tradeoff Analysis for Real Time Operation," *IEEE Transactions on Power Systems*, Volume 22, Issue 4, Nov. 2007, pp. 2287 2288.
- 9. *M. Ni, J. McCalley, V. Vittal, and T. Tayyib, "On-line risk-based security assessment," *IEEE Transactions on Power Systems*, Vol. 18., No. 1, February, 2003, pp 258-265.
- *M. Ni, J. McCalley, V. Vittal, S. Greene, *C. Ten, *V. Gangula, and T. Tayyib, "Software Implementation of online risk-based security assessment," *IEEE Transactions on Power Systems*, Vol. 18, No. 3, August 2003, pp 1165-1172